
Polydisperse Particulate Solids Mixing and 
Segregation: Nonstationary Markov Chains 

C. H. CHOU, J. R. JOHNSON *, and E. G. RIPPIE 

Abstract The feasibility of analyzing interparticulate translocations 
within agitated beds of polydisperse particulate solids in terms of Markov 
chains was investigated. A binary mixture of spherical particles subjected 
to vertical sine wave vibration is shown to behave in accordance with a 
nonstationary Markov chain having singly stochastic transition matrixes. 
The transition probability elements of such matrixes, calculated from 
a knowledge of the initial and final occupancy vectors, agree with those 
estimated using tracer particles. With appropriate restrictions, the former 
method, based on the solution of simultaneous equations, permits a 
quantitative evaluation of particle mobilities throughout the bed. 
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The mixing of solid particles is a key step in many in- 
dustrial and technical processes. Its pharmaceutical im- 
portance related to the manufacture of solid dosage forms 
is obvious, and the field of solids mixing has developed an 
extensive literature. Most of this literature deals with the 
sta$istical nature of the mixing process in its various forms, 
with the result that numerous degrees of mixedness (1) 
have been defined. These quantities are scalar and do not 
uniquely represent the composition tensors that would 
otherwise rigorously characterize the total state of mix. 
Such approaches, while of significant value in character- 
izing overall kinetic behavior (2), are necessarily incom- 
plete. 

A more comprehensive description of the translocations 
of particles within dynamic particulate beds can be 
achieved by the analysis of such systems in terms of sto- 
chastic theory. Some advantages of this approach are that 
both particle distributions and particle mobilities can be 
studied simultaneously and the processes of mixing and 
segregation can be examined in detail throughout the 
systems. 

Oyama and Ayaki (3) considered the theoretical aspects 
of a Markov chain, having stationary transition matrixes, 
applied so as to describe the mixing of monodisperse par- 
ticles, but they did not verify their results experimentally. 
The motion of monodisperse solids in a twodimensional 
twin-shell mixer was studied, and the applicable stationary 
transition matrix of a Markov process was established by 
using single tracer particles (4). Good agreement was found 
between predicted and measured results using this tech- 
nique. 

The axial mixing of solid particles in a motionless mixer 
was studied in terms of a Markov chain (5). The transition 
probabilities were determined by measuring the distri- 
bution of tracer particles before and after passage of the 
bed through the mixer. Good agreement between experi- 
ment and theory was found for up to seven mixing passes, 
assuming the chain to be homogeneous. 

The purpose of the present paper is to extend the ap- 
plication of Markov chains to polydisperse solids systems 

in which the transition matrixes are both nonstationary 
and singly stochastic. While such systems proceed to 
equilibrium states, these states represent nonuniform 
distributions of particles in general; the applicable Markov 
chains provide insight into the mixing-segregation process. 
The experimental system was selected to demonstrate the 
practical applicability of the theory and the experimental 
approach to polydisperse systems in general. 

THEORY 

Transition matrixes arising from Markov chains describing the mixing 
of monodisperse solids are, of necessity, stationary, since the magnitude 
of the elements representing the probabilities of particle movements from 
location to location are independent of local bed compositions. This 
condition is a result of the physical similarity of all particles in the system 
except for some superficial identifying feature of the tracer particles. 

A further simplification resnlts for such systems if, for purposes of 
analysis, the particulate mass is divided into cells containing equal 
numbers of particles. The transition matrix then becomes doubly sto- 
chastic, since both row and column sums are unity. For such finite, irre- 
ducible, aperiodic chains having doubly stochastic transition matrixes, 
it follows that all states become equally probable in the limit, and the 
system ultimately assumes a state of random mix. Since such systems 
are not subject to segregation, they can he mixed satisfactorily by any 
method, and their study is of somewhat limited practical utility. 

Polydisperse particulate solids, in contrast, are subject to segregation; 
both mixing and segregation occur simultaneously when such systems 
are agitated. This result is a direct consequence of the fact that the motion 
of a given particle is affected significantly by the composition gradient 
it experiences in its immediate neighborhood. As mentioned previously, 
the transition matrixes of Markov chains applied to these systems are 
both nonstationary and singly stochastic. In the present paper, binary 
mixtures of spherical particles are subjected to vertical sine wave oscil- 
lation and the resultant particle translocations are analyzed. 

A finite, discrete, first-order Markov chain is appropriate for processes 
where particles move among a finite number of imaginary cells within 
the bed over arbitrary time intervals and where the transition probabil- 
ities for movement depend solely on the state of the system and on the 
length of the time interval corresponding to a unit step. Mathematically, 
such a Markov chain can he expressed as the matrix product of a cell 
occupancy or distribution probability vector with a transition probability 
matrix. The resultant row vector represents the new occupancy or dis- 
tribution probability following one or more steps in the chain. Thus: 

aiPij = a .  I (Eq. 1) 

where a, denotes the ith occupancy or distribution probability vector for 
a system divided into n cells: 

0%. 2)  

P,, is the transition matrix corresponding to the step(s) between the states 
that exist after steps i and j ,  respectively; pkl is the probability of 
movement of a particle from cell k to cell 1. Since the matrixes P,, are 
nonstationary: 
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From the definition of phi, it is apparent that Z;l=, p k l =  1 for all k whereas 
ZExl # 1 in general. These relationships correspond to the singly sto- 
chastic condition. 

With successive steps in the chain, P;,,+1 approaches a limit having as 
an eigenvector the equilibrium occupancy or distribution vector and also 
having a corresponding eigenvalue of unity. 

In the event the system is divided into cells of unequal volume, Eq. 1 
must be written in the more general form: 

ainPijn-’ = aj (Eq. 5) 

where: 
o . . .  

(Eq. 6) . . . . .  
. . o x k o .  
. . . . . o ]  
0 . .  . o x ,  

and where x k  represents the relative volume of cell k .  However, in the 
present paper, all cells are of the same volume so that II and n-l cancel 
and Eq. 5 can be simplified to Eq. 1. 

If it is assumed that the values of P k /  are unknown for a given step but 
that the corresponding initial and final occupancy vectors are known, then 
from the definition of p k l  i t  is apparent that  n linear independent equa- 
tions exist. Also, because the sum of the elements in any occupancy vector 
is a constant, an additional n - 1 linear independent equations can be 
written. That is, for a given step in the Markov chain under discussion, 
2n - 1 elements in the corresponding transition matrix can be determined 
from a knowledge of the states of the system before and after a given step. 
The remainder of the n2 elements of the nth-order transition matrix ei- 
ther must be zero or must otherwise be known by some independent 
means. Unless this latter requirement is met, no unique solution can be 
found for Eq. 1. 

It has been shown, by the experimental means discussed later, that  all 
but 2n - 1 of the n2  elements Pkl  of the transition matrix have negligible 
values and may be assumed to be zero for suitably short transition time 
intervals. The transition matrixes corresponding to these observations 
have the general form: 

01 0 .  E:: P z z  0 : 

Lo : 
The 2n - 1 unknowns in Pij can be determined from the solutions of 

the 2n - 1 linear independent simultaneous equations, which have been 
shown to result from the stochastic condition of the transition matrix and 
from Eq. 1. 

EXPERIMENTAL 

A segmented brass cylinder, 2.54 cm i.d. and 30 cm in height, containing 
the particulate system under study was mounted vertically on a specially 
designed shaking device (2). This shaker imparted a vertical sinusoidal 
motion to the cylinder and was capable of precise adjustment of both the 
frequency and amplitude of the shaking motion. 

The binary mixture used in this study was comprised of 112.5 g each 
of 2.38- and 5.56-mm chrome steel balls and was loaded into the cylinder 
in a randomly mixed state prior to each shaking sequence. A random 
mixture was achieved by the successive addition of mixtures of equal 
weights of both components in small increments of less than 8% of the 
total bed. The adequacy of this mixing method was verified by sam- 
pling. 

The particulate bed was approximately 14 cm in depth and was per- 
mitted to expand freely during shaking. Shaking was conducted a t  a 
frequency of 17.08 Hz, with a peak to peak amplitude of 5.08 mm. Max- 
imum expansion was estimated at 1-2 cm within each oscillation of the 
shaker. 

Following agitation for various periods, the occupancy vectors of the 
bed were determined by sequentially removing the six 2.3-cm segments 
of the cylinder, one a t  a time, and noting the weight of the bed contained 
in each and the corresponding weight of the larger component. The 
fractional composition of each cell thus corresponded to the components 
a, of the occupancy vector following agitation. The components a, of the 

Table I-Transition Probability Elements for Tracer-Estimated 
and Computed Transition Matrixes 

0-5 sec 0-10 sec 0-15 sec 

Esti- Com- Esti- Com- Esti- Com- 
pkl mateda pu tedb  mated pu ted  mated puted 

pI1 1.mo 1.000 1.000 1.000 1.000 1.000 
p z ,  0.229 0.198 0.338 0.272 0.474 0.324 
p z 2  0.771 0.802 0.662 0.728 0.526 0.676 
p s 2  0.263 0.296 0.504 0.564 0.560 0.631 
pas 0.737 0.704 0.496 0.436 0.440 0.369 
pas 0.303 0.288 0.582 0.620 0.729 0.841 
p44 0.697 0.712 0.418 0.380 0.271 0.153 
p54 0.155 0.238 0.557 0.578 0.807 0.851 
p S 5  0.845 0.762 0.443 0.422 0.193 0.149 
p65 0.092 0.136 0.428 0.423 0.521 0.600 
p66 0.908 0.864 0.572 0.577 0.479 0.400 

UElements estimated from the movements of trdLer particles. b Ele 
nients computed from simultaneous equations. 

initial occupancy vector were taken as 0.5 where the bed was randomly 
mixed initially. Where the bed was partially segregated a t  the beginning 
of the transition time segment of interest, the components a, were those 
found by measurement after independent runs of the proper duration. 
This procedure was necessary since the system was disrupted by the 
sampling method employed. 

Transition Matrixes Determined by Tracer Particles-One-sixth 
of both the large and small components were marked by being blued with 
a commercial cold process gun bluing solution. The randomly mixed bed 
was loaded into the segmented cylinder so that the marked particles were 
located within a given segment. After being vibrated for a predetermined 
period, the system was analyzed as previously described. The relative 
movement of the large and small marked components into cylinder seg- 
ments other than those in which they were located originally corresponds 
to the transition probabilities pkl. By repeated experiments in which the 
marked particles are placed in the various cylinder segments, it is possible 
to construct the transition matrix. 

Transit ion Matrixes Determined by Solution of 2n - 1 Simulta- 
neous Equations-As discussed previously, Eq. 1 and the singly sto- 
chastic transition matrixes define 2n - 1 linear independent equations 
whose coefficients correspond to the transition probability elements, phi,  
as indicated in Eq. 7. Sets of equations corresponding to various initial 
and final occupancy vectors were solved on a digital computer’ using a 
double precision program based on the Gauss-Jordan method of con- 
densed elimination with partial pivoting. This approach provides a 
convenient method of obtaining the transition matrixes for any compo- 
nent of a polydisperse mixture without the need for tedious multiple 
measurements of tagged particles. 

RESULTS AND DISCUSSION 

Transition matrixes for the large component were determined using 
tracer particles for transition time periods of 5, 10, 15, and 20 sec, be- 
ginning in each case with randomly mixed particulate beds. In no case 
were marked large particles found in bed segments below their initial 
location; however, after 20 sec of shaking some particles were found to 
have moved into the second segment above their original position. This 
latter movement corresponds to a transition giving rise to a positive value 
of p/>,/?-z, where the six cylinder segments are serially numbered starting 
a t  the top. These results indicate that, for sufficiently short time intervals, 
transitions can be represented by matrixes of the type given in Eq. 7. 
However, as the system approaches its equilibrium state, other transitions 
become significant even for short time intervals. Results of the tracer 
particle studies are presented in Table I. 

An indication of the accuracy of tracer-estimated transition matrixes 
can be obtained by comparing occupancy vectors computed from Eq. 1 
with those obtained by direct bed analysis. Figure 1 displays bed com- 
positions determined by direct measurement together with those pre- 
dicted by Eq. 1. Errors are within probable statistical limits, and the 
accuracy permits prediction of the distribution of a component within 
approximately 3% based on total content. Correspondingly lower percent 
errors will result where samples contain larger numbers of particles due 
either to larger sample size or smaller average particle size. 

1 Control Data Corp. Cyber 74. 
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Figure 1-Fraction of the large component as a function of bed location 
and time o f  agitation. Data are shown for 5- ,  lo-, and 15-sec periods of 
agitation for each of the six bed positions, numbered from the top. Points 
represent compositions by analysis, and lines represent calculated 
values based on the transition matrixes. 

Occupancy vectors, representing the averages of seven identical runs 
in each case, were used to compute transition matrixes corresponding 
to those determined by tracer methods. These are presented in Table I 
as a list of their component transition probability elements. Good 
agreement can be seen between transition probabilities determined by 
the two alternative methods used. 

The average occupancy vectors were also used to compute PL, for four 
successive 5-sec time intervals. The inequality expressed by Eq. 4 holds, 
and the chain is nonstationary (Table 11). 

Table II.-"ransition Probability Elements Computed for 
Successive 5-sec Time Intervals 

0-5 5-1 0 10-15 15-20 
PkI sec sec sec sec 

PI I 

P2l 

P22 ~~ 

P 3 2  

P33 

P43 

P44 

Ps4 
P S S  

P6 5 

P 6 6  

1.000 
0.198 
0.802 
0.296 
0.704 
0.288 
0.712 
0.238 
0.762 
0.136 
0.864 

1.000 
0.068 
0.932 
0.270 
0.730 
0.350 
0.650 
0.379 
0.621 
0.331 
0.669 

1.000 
0.040 
0.960 
0.064 
0.936 
0.236 
0.764 
0.323 
0.677 
0.308 
0.692 

1.000 
0.088 
0.912 
0.131 
0.869 
0.181 
0.819 
0.363 
0.637 
0.428 
0.572 

Mention should be made concerning the transition matrixes related 
to the movement of the second component. While it is true that the oc- 
cupancy vectors of the first component uniquely define those of the 
second component, the same cannot be said of the respective transition 
matrixes. Experimentally, the blue 2.38-mm tracer balls had significantly 
greater mobility than the 5.56-mm balls. The smaller halls moved in both 
directions from their original locations, and their tracers could he found 
in as many as five segments after a single 5-sec period of agitation. Since 
more than 2n - 1 transition probability elements were nonzero in this 
case, the transition matrixes could not be calculated from the occupaniy 
vectors but could only he estimated uia tracer particles. 

CONCLUSIONS 

The mixing and segregation that occur within vibrated polydisperse 
particulate beds can be studied as a nonstationary Markov chain. 
Transition matrixes corresponding to relatively short agitation time in- 
tervals can be satisfactorily computed from a knowledge of the initial and 
final occupancy vectors. 

In a binary mixture, a single large particle moving into or out of a given 
cell does not uniquely imply a corresponding movement of either another 
single large particle or of several small particles. Hence, the transition 
matrix established for one component limits, but does not define, the 
transition matrix of the second component. This limitation is not serious, 
however, since the occupancy vectors of the two components are com- 
plementary. The general methods used in the present study can he ap- 
plied to the analysis of movement of a given component in a complex 
polydisperse mixture regardless of the number of components. 

The transition probability elements provide a quantitative indication 
of a given component's mobility as a function of time and location. It is 
particularly significant that the mechanisms responsible for the observed 
mobilities are not explicitly implied by the transition matrixes hut are 
accurately manifested by them. Thus, the approach permits the a post- 
eriori investigation of a variety of possible mechanistic models. The 
likelihood of wall effects in the system presented in this paper does not 
invalidate the analysis but can be investigated in depth using these 
methods. 
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